

Robotics I: Introduction to Robotics Exercise 5 – Grasping

Jonas Kiemel, Tamim Asfour

http://www.humanoids.kit.edu

www.kit.edu

Grasping - Exercises

1. Friction Triangles

2. Grasp Wrench Space

3. Force Closure

4. Medial Axes

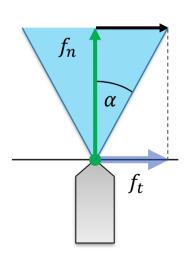
Exercise 1: Friction Triangles

Two-dimensional object with center of mass c Point contacts with friction Contact forces are represented by friction triangles Opening angle α for a friction triangle 1. with $\mu = 1$ Draw normal forces and corresponding 2. friction triangles Determine force vectors at the edges of 3. the friction triangles 0 1 2 3 5 6 í٥ 4

Exercise 1.1: Opening Angle of a Friction Triangle

Determine the opening angle α of a friction triangle assuming a friction coefficient $\mu = 1$.

 $\alpha =$



Contact Models: Coulomb's Law of Friction

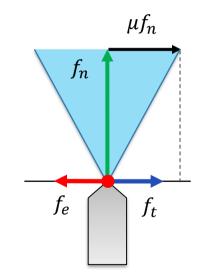
Empirical Law

Describes the relation of the tangential force f_t to the normal force f_n :

 $f_t \leq \mu \cdot f_n$

Friction coefficient
$$\mu > 0$$
 (material dependent)

- For static contact:
 - $f_t < \mu \cdot f_n$
 - Tangential force acts against an applied force f_e .

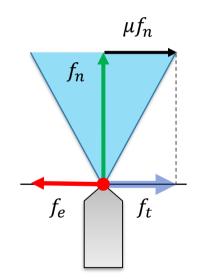


Contact Models: Coulomb's Law of Friction

- Empirical Law
- Describes the relation of the tangential force f_t to the normal force f_n :

 $f_t \leq \mu \cdot f_n$

- Friction coefficient $\mu > 0$ (material dependent)
- A contact starts sliding if:
 - $\bullet f_e > f_t = \mu \cdot f_n$
 - Tangential force acts against direction of motion.
 - Note: The friction coefficient for sliding friction may differ from the friction coefficient for static friction!

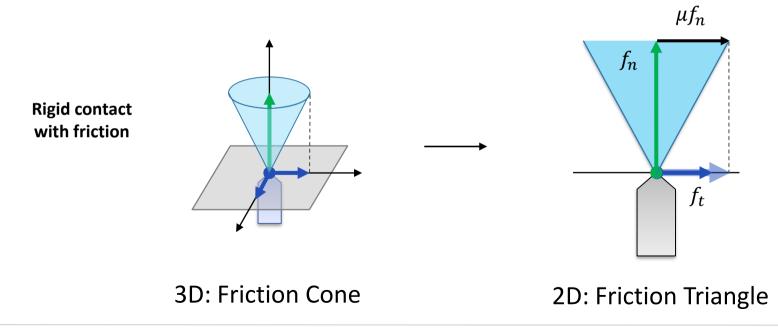


8 Robotics I: Introduction to Robotics | Exercise 05

Contact Models: Coulomb's Law of Friction

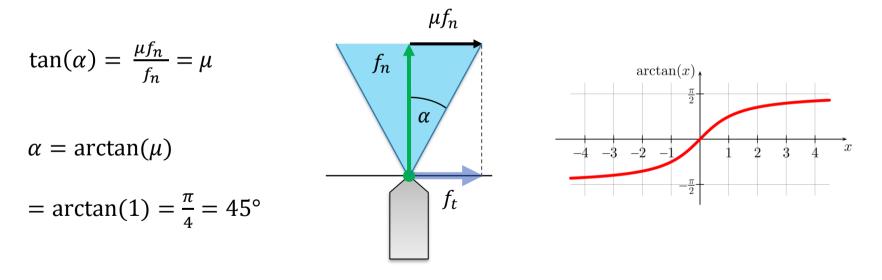
Empirical Law

Describes the relation of the tangential force f_t to the normal force f_n :



Exercise 1.1: Opening Angle of a Friction Triangle

Determine the opening angle α of a friction triangle assuming a friction coefficient $\mu = 1$.



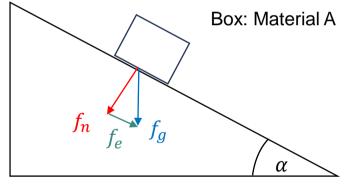
How could we determine the friction coefficient between two materials?

$$f_n = \cos(\alpha) \cdot f_g$$

 $f_e = \sin(\alpha) \cdot f_g$

The box starts sliding if

 $f_e = \mu \cdot f_n$ $\sin(\alpha) = \mu \cdot \cos(\alpha)$ $\tan(\alpha) = \mu$



Ramp: Material B

Contact points:

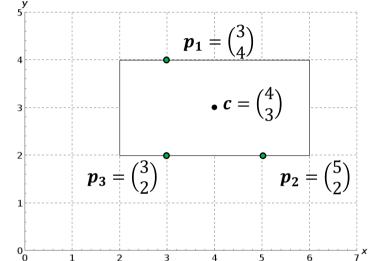
$$p_1 = \binom{3}{4}, \quad p_2 = \binom{5}{2}, \quad p_3 = \binom{3}{2}$$

Corresponding force vectors:

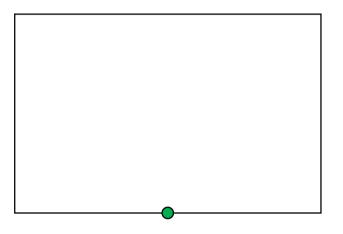
$$f_1 = \begin{pmatrix} 0 \\ -0.5 \end{pmatrix}, f_2 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}, f_3 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

Task: Draw the force vectors and the corresponding friction triangles.

$$\alpha = \arctan(\mu) = 45^{\circ}$$

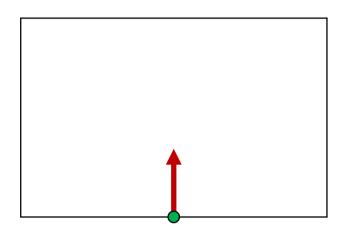


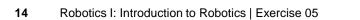
Draw normal force



Opening angle:

 $\alpha = \arctan(\mu)$



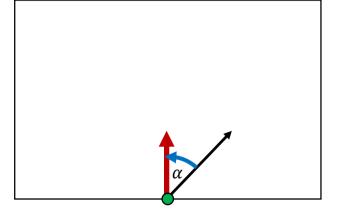


Draw normal force

Opening angle:

 $\alpha = \arctan(\mu)$

Draw triangle

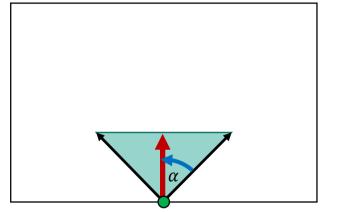


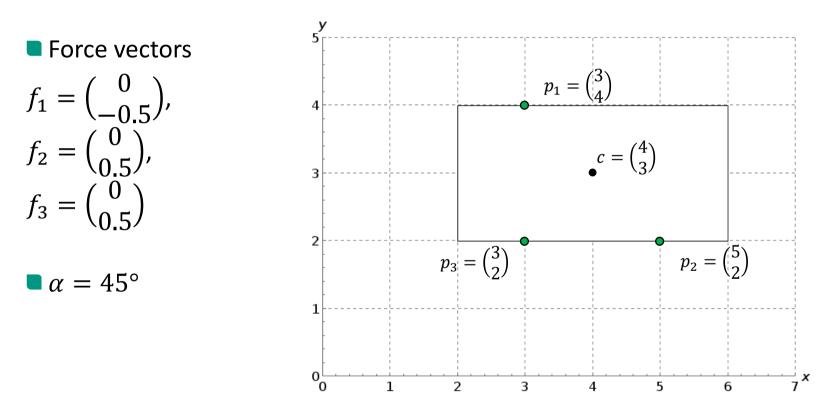
Draw normal force

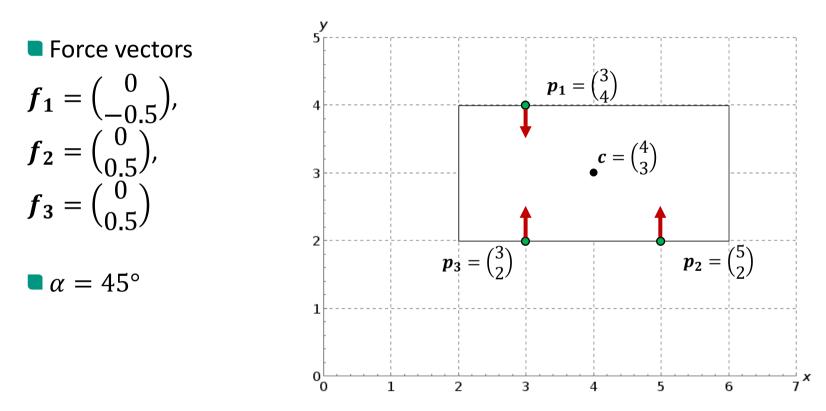
Opening angle:

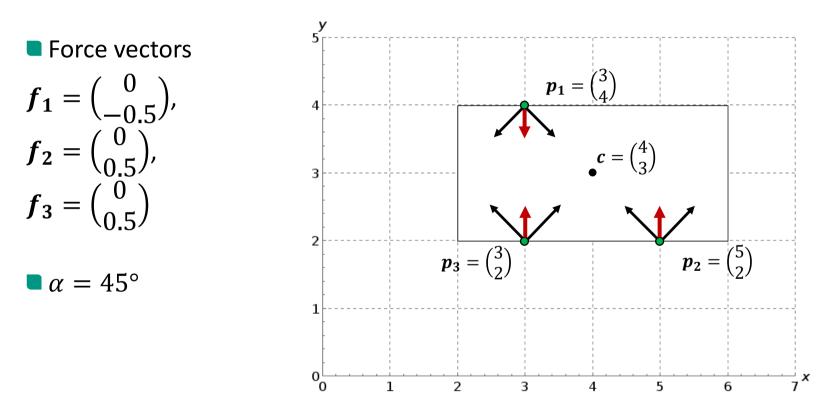
 $\alpha = \arctan(\mu)$

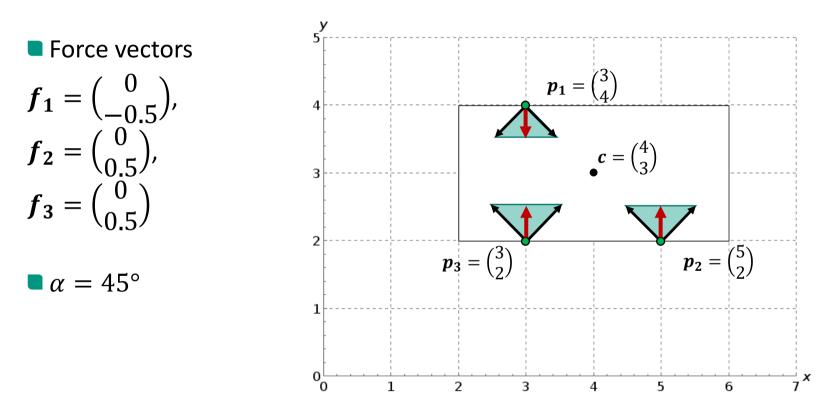
Draw triangle



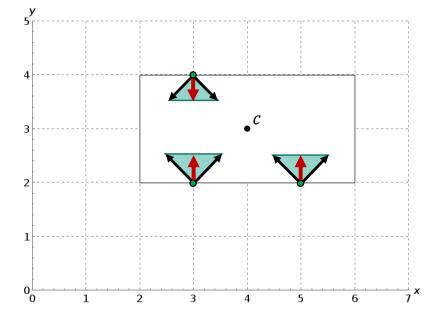




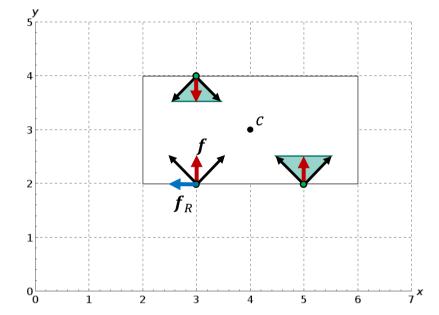




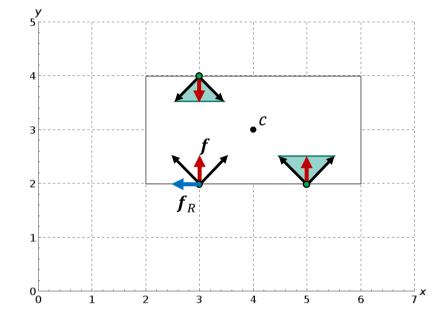
Determine the force vectors at the edges of the friction triangles



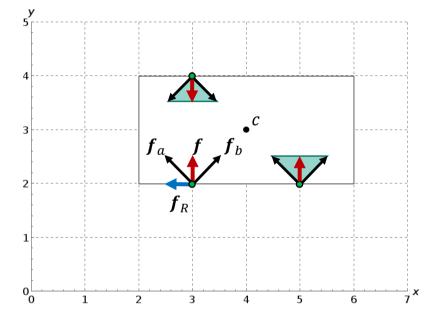
- Determine the force vectors at the edges of the friction triangles.
- Force of friction *f_R* acts perpendicular to *f*



- Determine the force vectors at the edges of the friction triangles.
- Force of friction *f_R* acts perpendicular to *f*
- $\blacksquare \|\boldsymbol{f}_R\| = \mu \cdot \|\boldsymbol{f}\|$

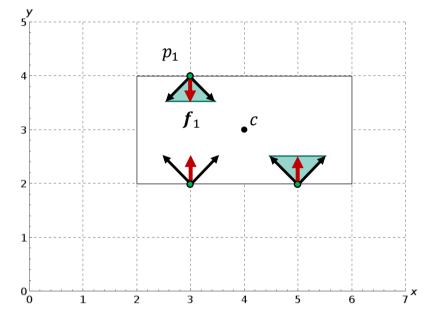


- Determine the force vectors at the edges of the friction triangles.
- Force of friction *f_R* acts perpendicular to *f*
- $\blacksquare \|\boldsymbol{f}_R\| = \mu \cdot \|\boldsymbol{f}\|$
- Force vectors at the edges: $f_a = f + f_R$ $f_b = f - f_R$



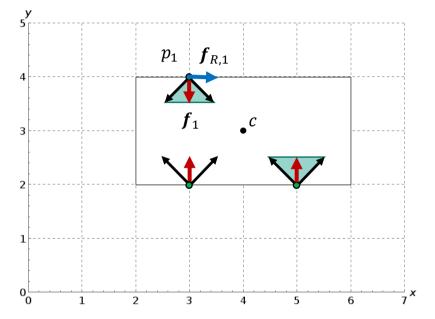
 $f_R \perp f, ||f_R|| = \mu \cdot ||f||, \mu = 1$ $f_a = f + f_R, f_b = f - f_R$

$$f_1 = \begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$$



 $f_R \perp f, ||f_R|| = \mu \cdot ||f||, \mu = 1$ $f_a = f + f_R, f_b = f - f_R$

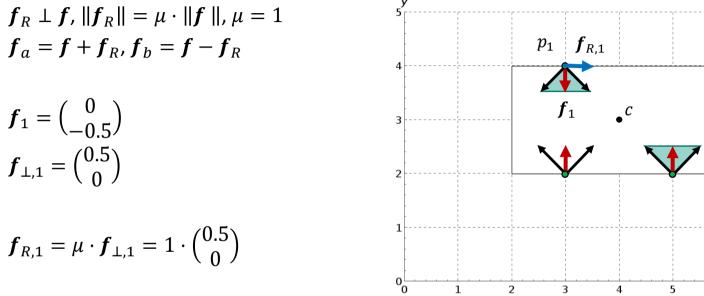
$$f_1 = \begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$$
$$f_{\perp,1} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$$



 $\boldsymbol{f}_1 = \begin{pmatrix} \boldsymbol{0} \\ -\boldsymbol{0.5} \end{pmatrix}$

 $f_{\perp,1} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$

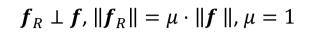
Exercise 1.3: Force Vectors at the Edges



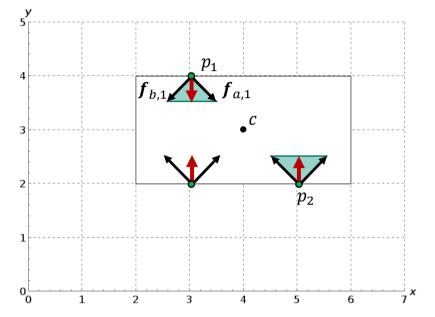
', x

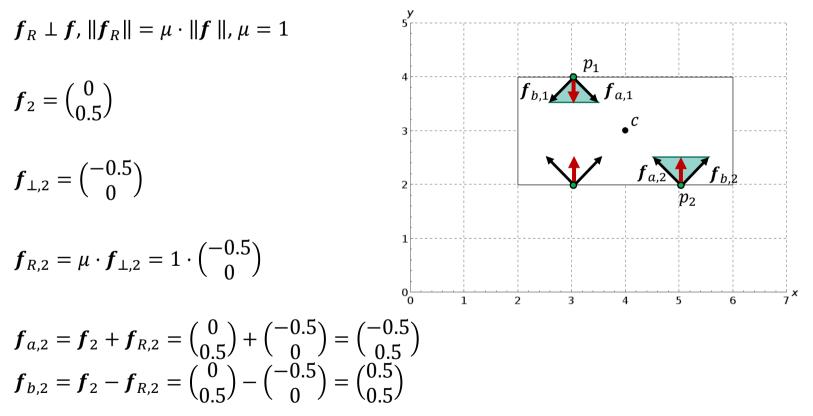
6

$f_{R} \perp f, ||f_{R}|| = \mu \cdot ||f||, \mu = 1$ $f_a = f + f_B$, $f_b = f - f_B$ p_1 $\boldsymbol{f}_{R.1}$ $f_1 = \begin{pmatrix} 0 \\ -0 5 \end{pmatrix}$ С $f_{\perp,1} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$ $\boldsymbol{f}_{R,1} = \boldsymbol{\mu} \cdot \boldsymbol{f}_{\perp,1} = 1 \cdot \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$ 0 ', × 1 2 З 5 6 $f_{a,1} = f_1 + f_{R,1} = \begin{pmatrix} 0 \\ -0 5 \end{pmatrix} + \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0 5 \end{pmatrix}$ $f_{b,1} = f_1 - f_{R,1} = \begin{pmatrix} 0 \\ -0.5 \end{pmatrix} - \begin{pmatrix} 0.5 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$

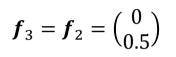


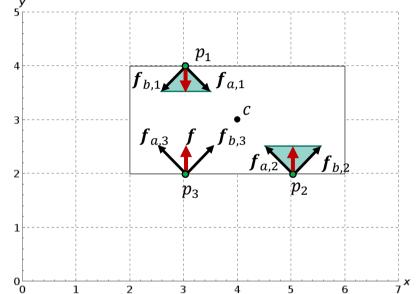
 $\boldsymbol{f}_2 = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0.5} \end{pmatrix}$



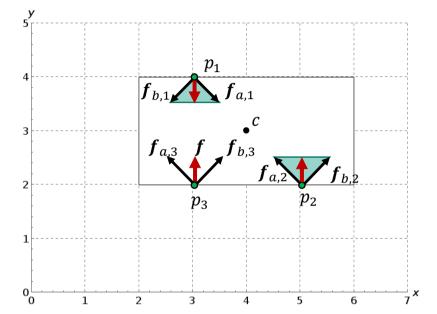


$f_{R} \perp f, ||f_{R}|| = \mu \cdot ||f||, \mu = 1$



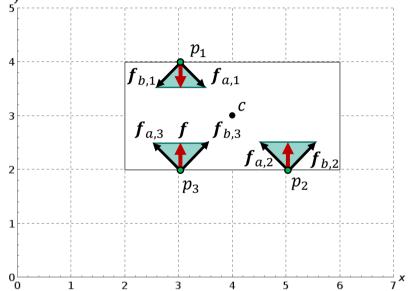


 $f_{R} \perp f, ||f_{R}|| = \mu \cdot ||f||, \mu = 1$ $f_{3} = f_{2} = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$ $f_{a,3} = f_{a,2} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$ $f_{b,3} = f_{b,2} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$



How does the friction triangle change when the friction coefficient decreases?

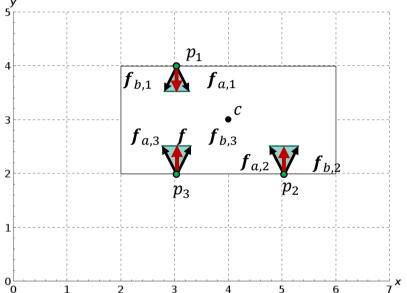
- a) The width increases while the height remains the same.
- b) The width decreases while the height remains the same.
- c) Width and height decrease.
- d) The height decreases, while the width remains the same.



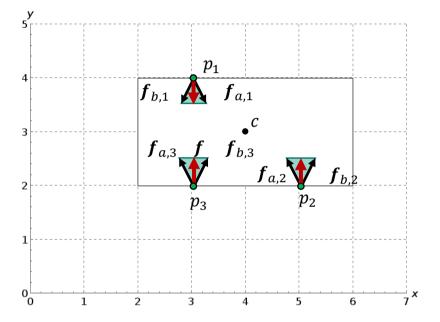
Karlsruher Institut für Technologie

How does the friction triangle change when the friction coefficient decreases?

- a) The width increases while the height remains the same.
- b) The width decreases while the height remains the same.
- c) Width and height decrease.
- d) The height decreases, while the width remains the same.
- The normal force *f* remains the same
 same heigth
- If μ decreases, $\|\boldsymbol{f}_R\| = \mu \cdot \|\boldsymbol{f}\|$ decreases as well → width decreases



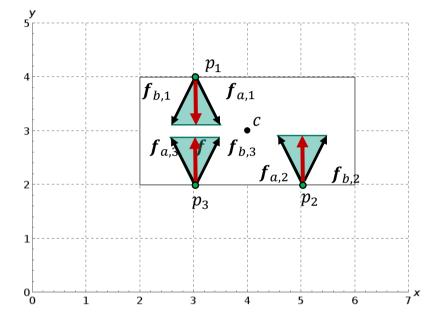
How can the original force of friction be restored despite a reduced friction coefficient?



How can the original force of friction be restored despite a reduced friction coefficient?

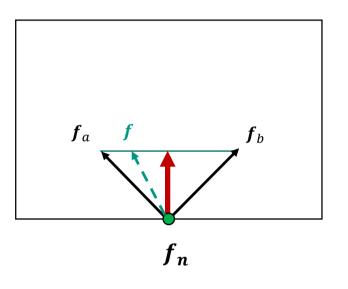
 \rightarrow Increase the normal force f

Risk: The object being grasped could be damaged



How can we describe the set of feasible force vectors using f_a and f_b assuming a fixed normal force f_n ?

 $f = f_a + \beta \cdot (f_b - f_a) \text{ with } \beta \in [0, 1]$ $f = (1 - \beta) \cdot f_a + \beta \cdot f_b$ $f = k_1 \cdot f_a + k_2 \cdot f_b$ with $k_1 + k_2 = 1$ and $k_1 \ge 0$; $k_2 \ge 0$

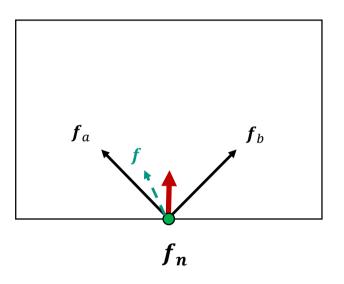


Exercise 1.3: Bonus

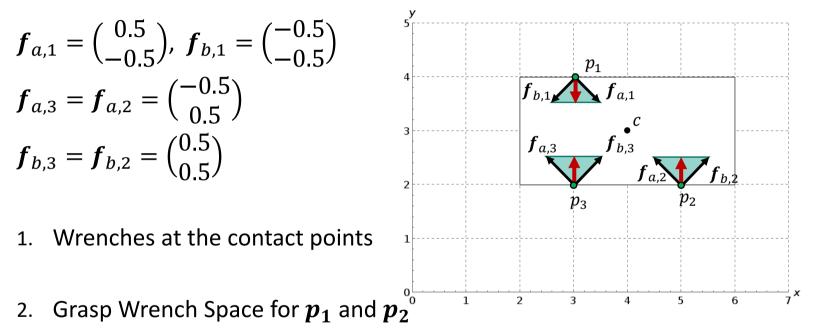
How can we describe the set of feasible force vectors using f_a and f_b assuming an arbitrary normal force f_n ?

 $\boldsymbol{f} = \mathbf{k}_1 \cdot \boldsymbol{f}_a + \boldsymbol{k}_2 \cdot \boldsymbol{f}_b$

with $k_1 \ge 0$; $k_2 \ge 0$



Exercise 2: Grasp Wrench Space

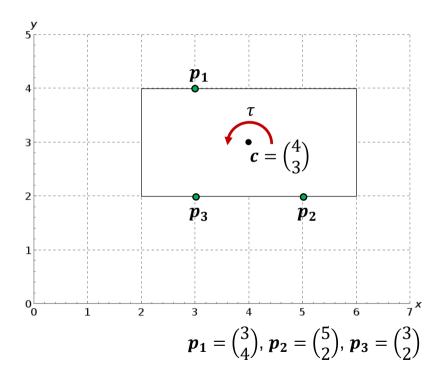


3. Grasp Wrench Space for p_1 , p_2 and p_3

• Wrenches in 2D:
$$w = \begin{pmatrix} f_x \\ f_y \\ \tau \end{pmatrix}$$

Torque in 2D:

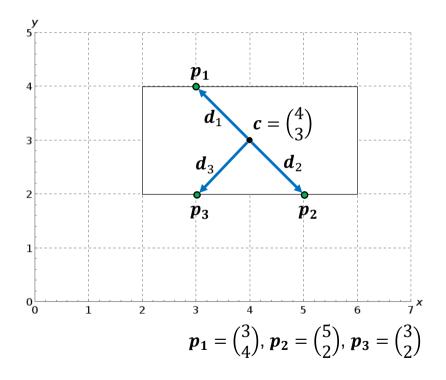
$$\mathbf{r} = \mathbf{d} \times \mathbf{f} = d_x \cdot f_y - d_y \cdot f_x$$
$$= \det \begin{pmatrix} d_x & f_x \\ d_y & f_y \end{pmatrix}$$



• Wrenches in 2D:
$$w = \begin{pmatrix} f_x \\ f_y \\ \tau \end{pmatrix}$$

Torque in 2D:

$$\tau = \mathbf{d} \times \mathbf{f} = d_x \cdot f_y - d_y \cdot f_x$$



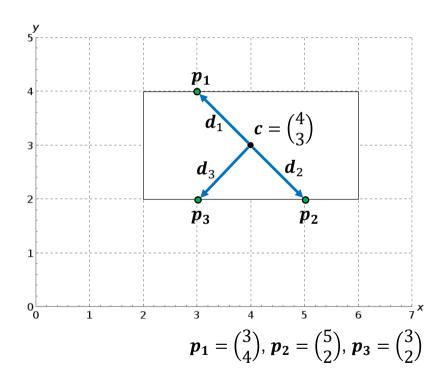
• Wrenches in 2D:
$$w = \begin{pmatrix} f_x \\ f_y \\ \tau \end{pmatrix}$$

$$\tau = \mathbf{d} \times \mathbf{f} = d_x \cdot f_y - d_y \cdot f_x$$

$$d_1 = p_1 - c = {3 \choose 4} - {4 \choose 3} = {-1 \choose 1}$$

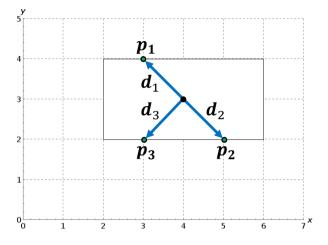
$$d_2 = p_2 - c = {5 \choose 2} - {4 \choose 3} = {1 \choose -1}$$

$$d_3 = p_3 - c = \binom{3}{2} - \binom{4}{3} = \binom{-1}{-1}$$



$$\boldsymbol{d}_{1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \boldsymbol{f}_{a,1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}, \boldsymbol{f}_{b,1} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

 $\tau_{a,1} =$



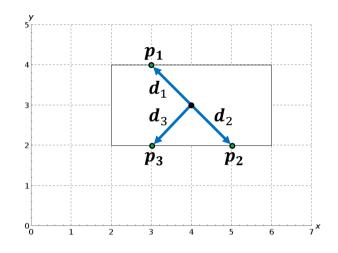
$$\boldsymbol{d}_{1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \boldsymbol{f}_{a,1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}, \boldsymbol{f}_{b,1} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

$$\tau_{a,1} = \boldsymbol{d}_1 \times \boldsymbol{f}_{a,1}$$

$$= \binom{-1}{1} \times \binom{0.5}{-0.5}$$

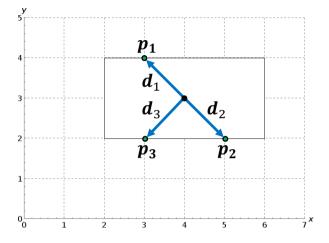
$$= (-1) \cdot (-0.5) - 1 \cdot 0.5$$

= 0.5 - 0.5 = 0



$$\boldsymbol{d}_{1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \boldsymbol{f}_{a,1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}, \boldsymbol{f}_{b,1} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

 $\tau_{b,1} =$



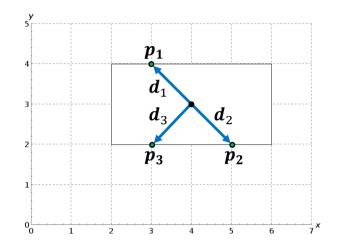
$$\boldsymbol{d}_{1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \boldsymbol{f}_{a,1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}, \boldsymbol{f}_{b,1} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

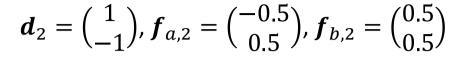
$$\tau_{b,1} = \boldsymbol{d}_1 \times \boldsymbol{f}_{b,1}$$

$$= \binom{-1}{1} \times \binom{-0.5}{-0.5}$$

$$= (-1) \cdot (-0.5) - 1 \cdot (-0.5)$$

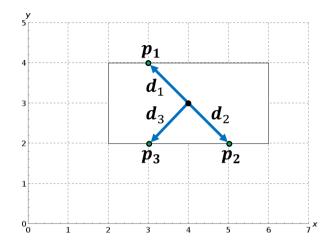
= 0.5 + 0.5 = 1



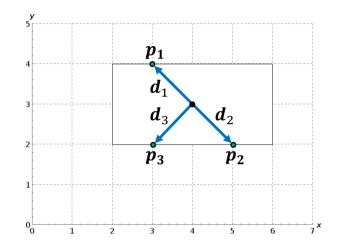


 $\tau_{a,2} =$

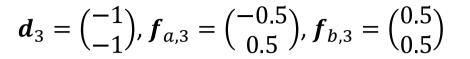
 $\tau_{b,2} =$



Karlsruher Institut für Technologie

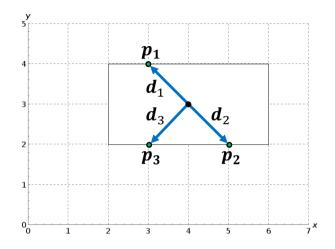


$$d_{2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, f_{a,2} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}, f_{b,2} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \tau_{a,2} = d_{2} \times f_{a,2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \times \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}, \tau_{a,2} = 1 \cdot 0.5 - (-1) \cdot (-0.5)$$
$$= 0.5 - 0.5 = 0$$
$$\tau_{b,2} = d_{2} \times f_{b,2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \tau_{b,2} = 1 \cdot 0.5 - (-1) \cdot 0.5$$
$$= 0.5 + 0.5 = 1$$

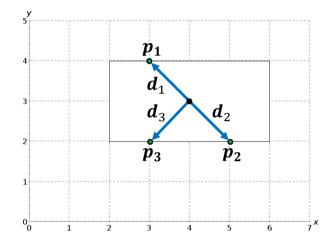


 $\tau_{a,3} =$

 $\tau_{b,3} =$



$$d_{3} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, f_{a,3} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}, f_{b,3} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$
$$\tau_{a,3} = d_{3} \times f_{a,3} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$
$$= (-1) \cdot 0.5 - (-1) \cdot (-0.5)$$
$$= -0.5 - 0.5 = -1$$
$$\tau_{b,3} = d_{3} \times f_{b,3} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$
$$= (-1) \cdot 0.5 - (-1) \cdot 0.5$$
$$= -0.5 + 0.5 = 0$$



$$f_{a,1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}, f_{b,1} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

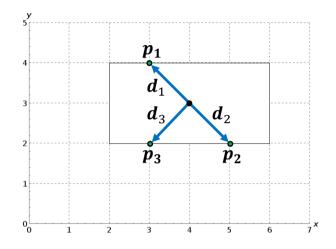
$$f_{a,3} = f_{a,2} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

$$f_{b,3} = f_{b,2} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$\tau_{a,1} = 0, \qquad \tau_{b,1} = 1$$

$$\tau_{a,2} = 0, \qquad \tau_{b,2} = 1$$

$$\tau_{a,3} = -1, \qquad \tau_{b,3} = 0$$



$$f_{a,1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}, f_{b,1} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

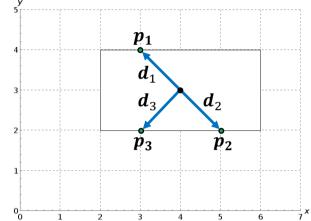
$$f_{a,3} = f_{a,2} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

$$f_{b,3} = f_{b,2} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$\tau_{a,1} = 0, \qquad \tau_{b,1} = 1$$

$$\tau_{a,2} = 0, \qquad \tau_{b,2} = 1$$

$$\tau_{a,3} = -1, \qquad \tau_{b,3} = 0$$

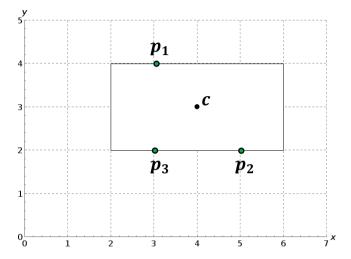


$$w_{a,1} = (f_{a,1}, \tau_{a,1}) = (0.5, -0.5, 0) \qquad w_{b,1} = (f_{b,1}, \tau_{b,1}) = (-0.5, -0.5, 1)$$

$$w_{a,2} = (f_{a,2}, \tau_{a,2}) = (-0.5, 0.5, 0) \qquad w_{b,2} = (f_{b,2}, \tau_{b,2}) = (0.5, 0.5, 1)$$

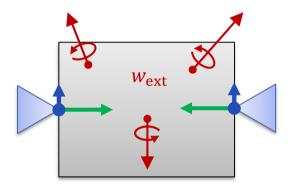
$$w_{a,3} = (f_{a,3}, \tau_{a,3}) = (-0.5, 0.5, -1) \qquad w_{b,2} = (f_{b,3}, \tau_{b,3}) = (0.5, 0.5, 0)$$

Draw the projection of the Grasp Wrench Space onto the (f_y, τ) plane for the contact points p_1 and p_2



Force-closed Grasps

Question: Can a grasp counteract any external wrenches?



- Assumption: Contacts can exert arbitrarily large forces. \rightarrow We can multiply each wrench w_{ij} with an arbitrary factor $k_{ij} > 0$.
- Resulting question: Can the grasp generate **arbitrary wrenches**? \rightarrow If so, the grasp can generate $-w_{ext}$ and the grasp is force-closed.

Force-closed Grasps

Grasp matrix (2D)

$$G = \begin{bmatrix} \boldsymbol{w}_{a,1}, \boldsymbol{w}_{b,1}, \boldsymbol{w}_{a,2}, \boldsymbol{w}_{b,2}, \dots, \boldsymbol{w}_{a,m}, \boldsymbol{w}_{b,m} \end{bmatrix} \in \mathbb{R}^{3 \times 2m}$$

A grasp is force-closed, if it can counteract **any external wrench** w_{ext} :

$$\forall \mathbf{w}_{\text{ext}} = (f_x, f_y, \tau) \in \mathbb{R}^3:$$
$$\exists \mathbf{k} \in \mathbb{R}^{2m}, \ \mathbf{k} \ge \mathbf{0}:$$
$$G \cdot \mathbf{k} + \mathbf{w}_{\text{ext}} = 0$$

Force-closed Grasps

Grasp matrix (2D)

$$G = \begin{bmatrix} \boldsymbol{w}_{a,1}, \boldsymbol{w}_{b,1}, \boldsymbol{w}_{a,2}, \boldsymbol{w}_{b,2}, \dots, \boldsymbol{w}_{a,m}, \boldsymbol{w}_{b,m} \end{bmatrix} \in \mathbb{R}^{3 \times 2m}$$

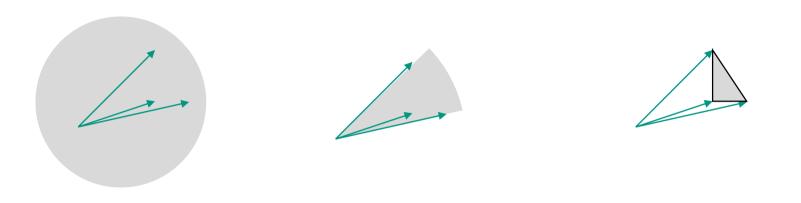
A grasp is force-closed, if it can counteract any external wrench w_{ext}:

$$\forall \mathbf{w}_{\text{ext}} = (f_x, f_y, \tau) \in \mathbb{R}^3:$$

$$\exists \mathbf{k} \in \mathbb{R}^{2m}, \ \mathbf{k} \ge \mathbf{0}:$$

$$G \cdot \mathbf{k} + \mathbf{w}_{\text{ext}} = 0 \qquad \text{pos}(G) = \mathbb{R}^3$$

Linear Hull and Convex Hull



Linear HullPositive linear HullConvex Hull $span(A) = \left\{ \sum_{i=1}^{j} k_i \cdot a_i \mid k_i \in \mathbb{R} \right\}$ $pos(A) = \left\{ \sum_{i=1}^{j} k \cdot a_i \mid k_i \ge 0 \right\}$ $conv(A) = \left\{ \sum_{i=1}^{j} k_i \cdot a_i \mid k_i \ge 0 \text{ and } \sum_i k_i = 1 \right\}$

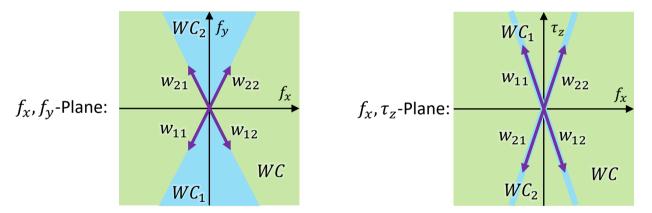
$$\operatorname{conv}(A) \subseteq \operatorname{pos}(A) \subseteq \operatorname{span}(A)$$

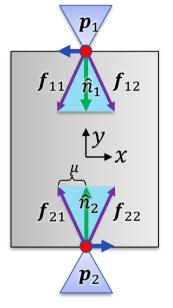
Which Wrenches can be generated: Example in 2D

Wrenches (edges of the friction cones): $\mathbf{w}_{11} = (-\mu \quad -1 \quad 3\mu)^T$, $\mathbf{w}_{12} = (\mu \quad -1 \quad -3\mu)^T$

$$\mathbf{w}_{21} = (-\mu \quad 1 \quad -3\mu)^T, \quad \mathbf{w}_{22} = (\mu \quad 1 \quad 3\mu)^T$$

Projections of the 3D Wrench space onto subspaces:





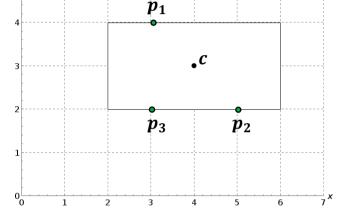
If the total set of wrenches spans ℝ³ ⇒ Wrenches can be created in all directions.
 ⇒ Grasp is force-closed.

Draw the projection of the Grasp

Exercise 2.2: Grasp Wrench Space for 2 Contact Points

Wrench Space onto the (f_y, τ) plane for the contact points p_1 and p_2

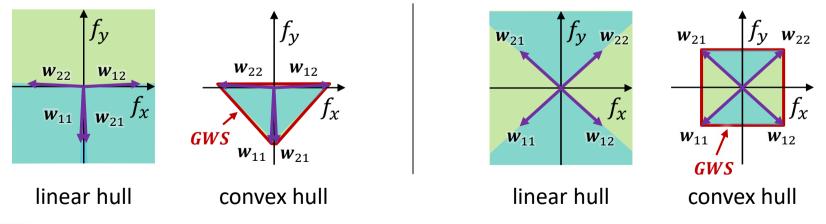
What is the Grasp Wrench Space?



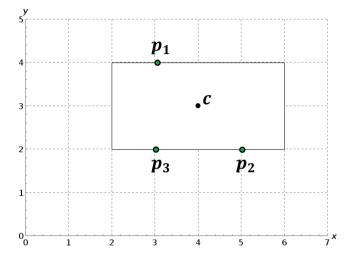
Grasp-Wrench-Space (2D)

Let $w_1, ..., w_m \in \mathbb{R}^3$ be the wrenches of the friction triangles of all contacts.

The **Grasp-Wrench-Space** *GWS* is the **convex hull** of the w_i $GWS = \operatorname{conv}(\{w_i\}) = \left\{\sum_{i=1}^m k_i w_i \mid k_i \ge 0 \text{ and } \sum_{i=1}^m k_i = 1\right\}$



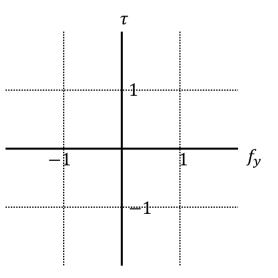
Draw the projection of the Grasp Wrench Space onto the (f_y, τ) plane for the contact points p_1 and p_2



$$w_{a,1} = (0.5, -0.5, 0)$$
 $w_{b,1} = (-0.5, -0.5, 1)$
 $w_{a,2} = (-0.5, 0.5, 0)$ $w_{b,2} = (0.5, 0.5, 1)$

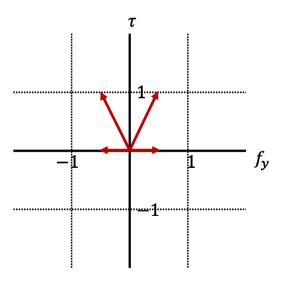
 $w_{a,1} = (0.5, -0.5, 0)$ $w_{b,1} = (-0.5, -0.5, 1)$ $w_{a,2} = (-0.5, 0.5, 0)$ $w_{b,2} = (0.5, 0.5, 1)$

Projection of the Grasp Wrench Space onto (f_y, τ) for p_1 and p_2



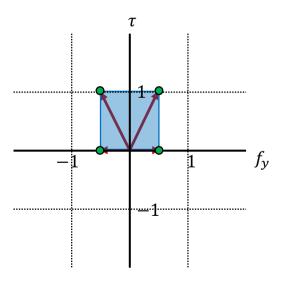
 $w_{a,1} = (0.5, -0.5, 0)$ $w_{b,1} = (-0.5, -0.5, 1)$ $w_{a,2} = (-0.5, 0.5, 0)$ $w_{b,2} = (0.5, 0.5, 1)$

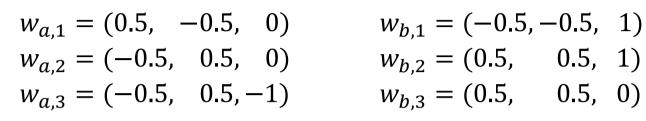
Projection of the Grasp Wrench Space onto (f_y, τ) for p_1 and p_2

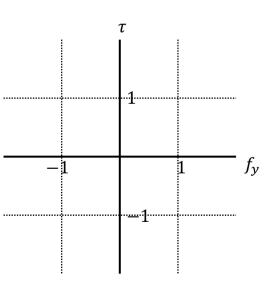


 $w_{a,1} = (0.5, -0.5, 0)$ $w_{b,1} = (-0.5, -0.5, 1)$ $w_{a,2} = (-0.5, 0.5, 0)$ $w_{b,2} = (0.5, 0.5, 1)$

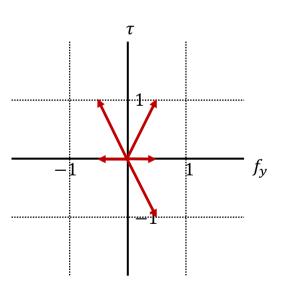
Projection of the Grasp Wrench Space onto (f_y, τ) for p_1 and p_2



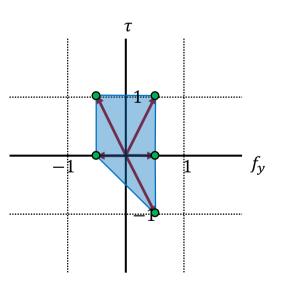




$$w_{a,1} = (0.5, -0.5, 0)$$
 $w_{b,1} = (-0.5, -0.5, 1)$ $w_{a,2} = (-0.5, 0.5, 0)$ $w_{b,2} = (0.5, 0.5, 1)$ $w_{a,3} = (-0.5, 0.5, -1)$ $w_{b,3} = (0.5, 0.5, 0)$



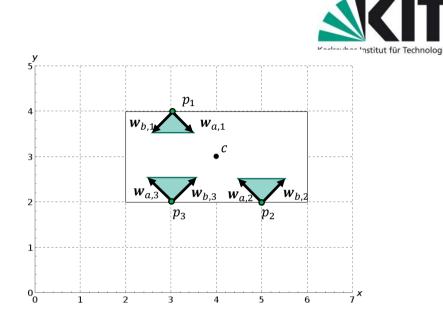
$$w_{a,1} = (0.5, -0.5, 0)$$
 $w_{b,1} = (-0.5, -0.5, 1)$ $w_{a,2} = (-0.5, 0.5, 0)$ $w_{b,2} = (0.5, 0.5, 1)$ $w_{a,3} = (-0.5, 0.5, -1)$ $w_{b,3} = (0.5, 0.5, 0)$



Exercise 3: Force Closure

- Are the following grasps force-closed?
 - 1. Two-finger grasp: p_1 , p_2
 - 2. Three-finger grasp: p_1 , p_2 and p_3

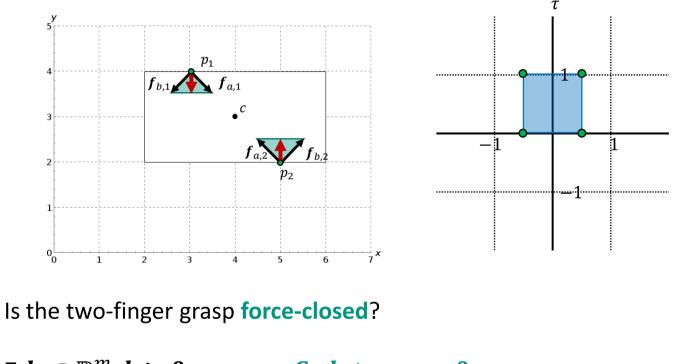
How would you calculate the ε-metric for the two grasps?



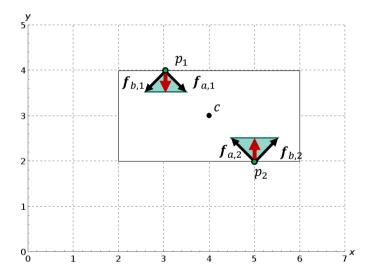
Karlsruher Institut für Technologi

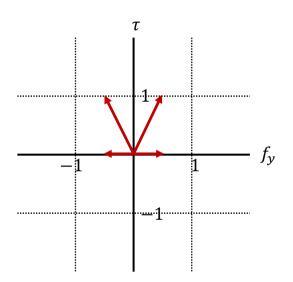
 f_{v}

Exercise 3: Two-finger grasp



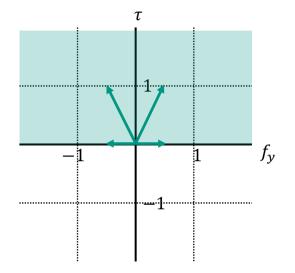
• What is pos(G)?





• What is pos(*G*)?

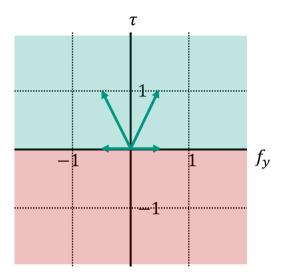
$$\operatorname{pos}(G') = \left\{ \begin{pmatrix} f_x \\ f_y \\ \tau \end{pmatrix} \in \mathbb{R}^3 \ \middle| \ \tau \ge 0 \right\} \neq \mathbb{R}^3$$

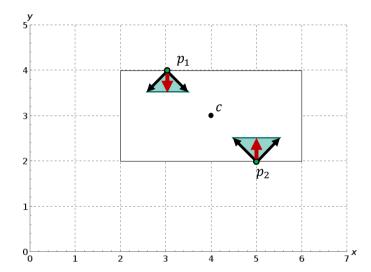


• What is pos(*G*)?

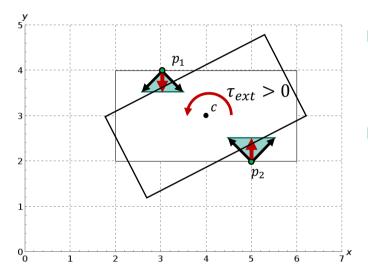
$$\operatorname{pos}(G) = \left\{ \begin{pmatrix} f_x \\ f_y \\ \tau \end{pmatrix} \in \mathbb{R}^3 \ \middle| \ \tau \ge 0 \right\} \neq \mathbb{R}^3$$

 \blacksquare The grasp cannot generate torques au < 0





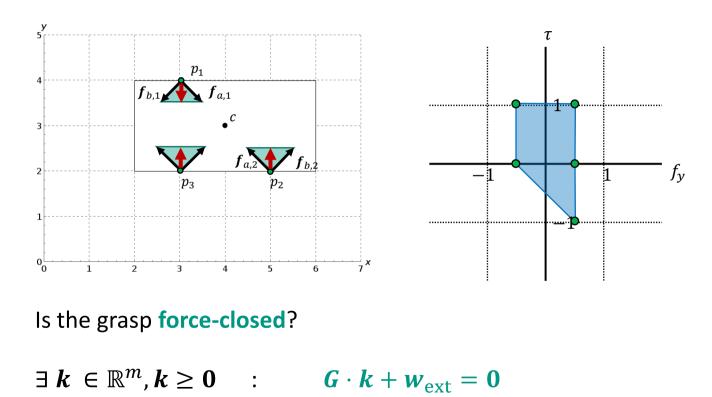
Exercise 3: Two-finger grasp



The grasp cannot generate torques $\tau < 0$

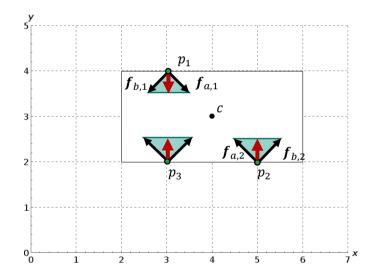
The grasp cannot counteract external torques $\tau_{ext} > 0$

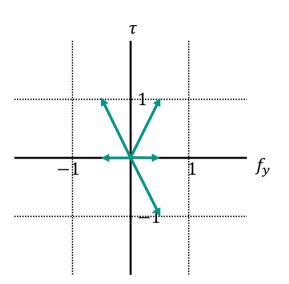
Exercise 3: Three-finger grasp



Exercise 3: Three-finger grasp

• What is pos(G)?



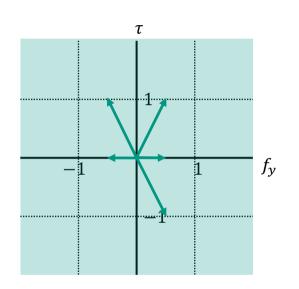


Exercise 3: Three-finger grasp

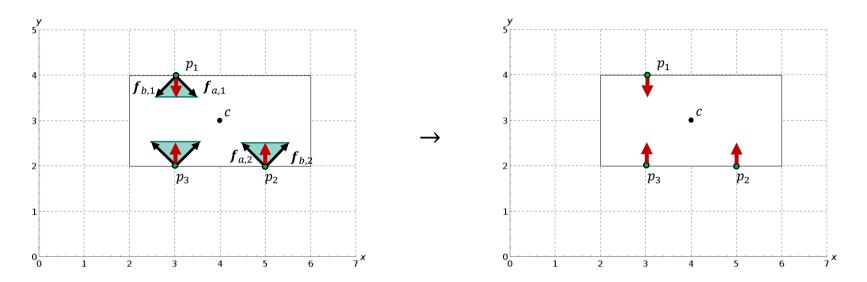
• What is pos(*G*)?

$$pos(G) = \left\{ \begin{pmatrix} f_x \\ f_y \\ \tau \end{pmatrix} \in \mathbb{R}^3 \right\} = \mathbb{R}^3$$

The grasp is force-closed



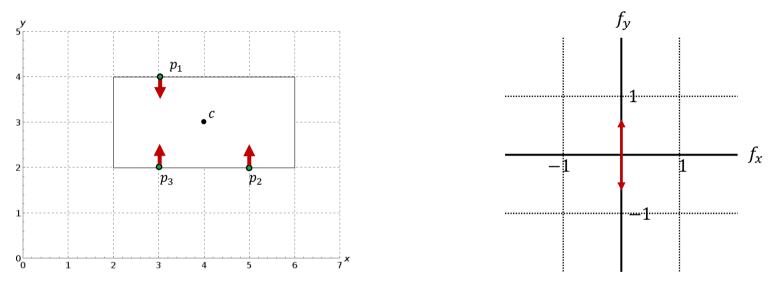
Exercise 3: Three-finger grasp, Bonus



Is the three-finger grasp form-closed?

→ Form-closure: Assume point contact without friction

Exercise 3: Three-finger grasp, Bonus



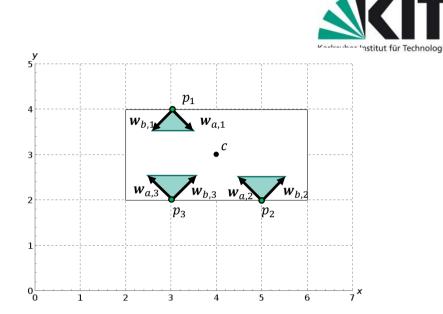
Is the three-finger grasp **form-closed**?

 \rightarrow The grasp cannot counteract forces $f_{\chi} > 0$ or $f_{\chi} < 0$

Exercise 3: Force Closure

- Are the following grasps force-closed?
 - 1. Two-finger grasp: p_1 , p_2
 - 2. Three-finger grasp: p_1 , p_2 and p_3

How would you calculate the ε-metric for the two grasps?



Grasp Quality: ε-Metric

Observe Grasps (A) and (B):

(A) y (B)

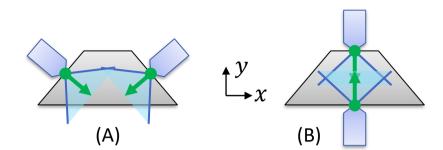
- Which grasp is force-closed?
 - (A) and (B)
- Are both grasps equally good?
 - With (A), high normal forces have to be excerted to generate friction forces in y-direction.
 - With (B), it is simpler to generate forces in all directions.
- How can this be quantified?

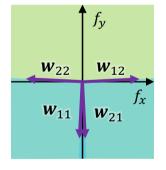
Grasp Quality: ε-Metric

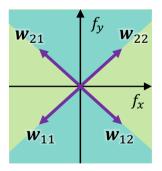
• Observe Grasps (A) and (B):

Which grasp is force-closed?
 (A) and (B)

Compare the f_x , f_y -planes of the wrench spaces:







Grasp Quality: Grasp-Wrench-Space

The **Grasp-Wrench-Space** *GWS* is the convex hull of the w_i $GWS = \operatorname{conv}(\{w_i\}) = \{\sum_{i=1}^m k_i w_i \mid k_i \ge 0 \text{ and } \sum_{i=1}^m k_i = 1\}$ How could one define a **measure for the quality** of a grasp using

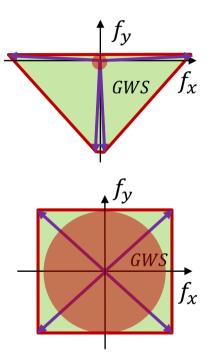
The *ε*-metric is the radius of the largest sphere around the origin of the GWS that is still completely contained in *GWS*.

It is sometimes also called the Grasp-Wrench-Space metric.

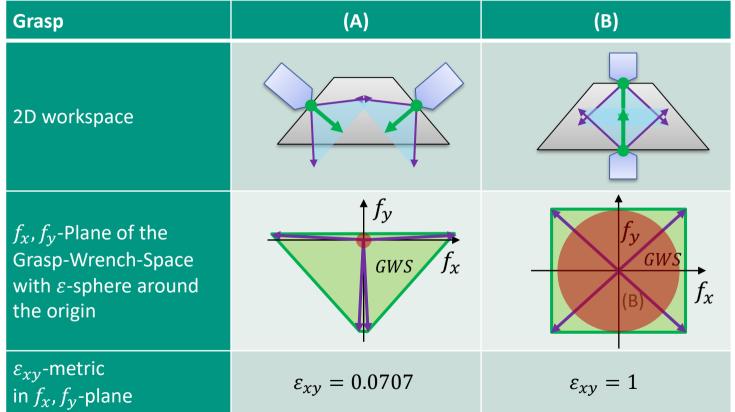
Intuition:

GWS?

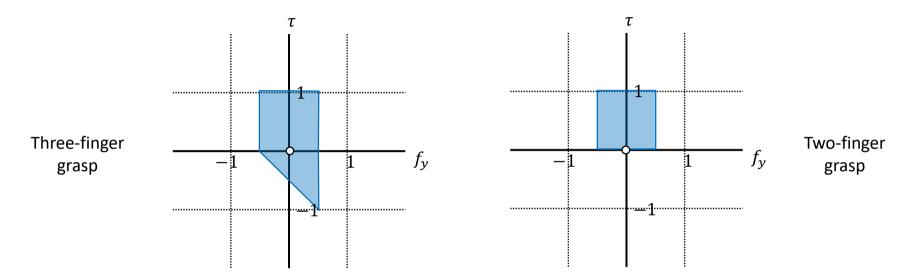
- \bullet is the strenght of the smallest wrench which brakes the grasp.
- The grasp withstands all wrenches with a strength of less than ε .
- If $\varepsilon > 0$, the grasp is force-closed.
- The larger ε , the more "stable" the grasp.



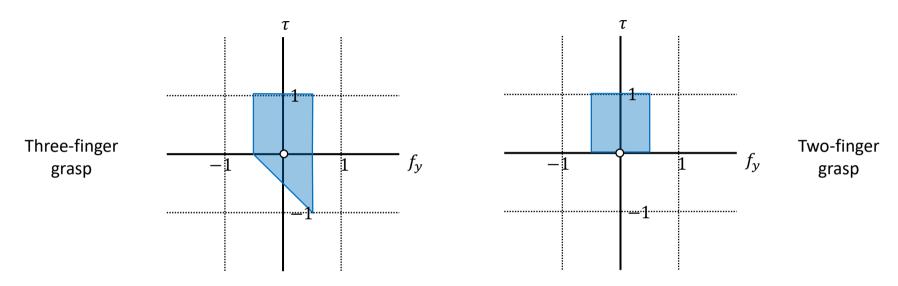
ε-Metric: Examples



Exercise 3.3: *ɛ*-Metric

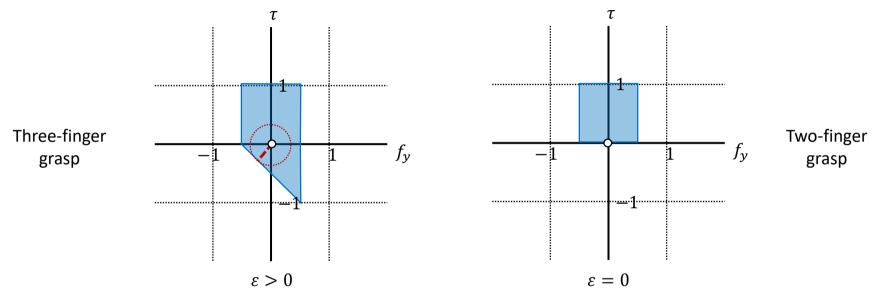


Exercise 3.3: *ɛ*-Metric



- 1. Calculate wrenches at the contact points
- 2. Draw the Grasp Wrench Space (convex hull of the wrenches)
- 3. Determine the minum distance from the origin to the edge of the Grasp Wrench Space

Exercise 3.3: *ɛ*-Metric



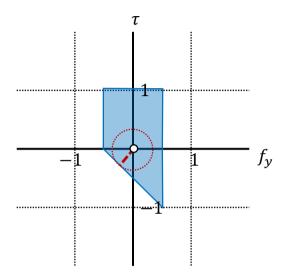
- 1. Calculate wrenches at the contact points
- 2. Draw the Grasp Wrench Space (convex hull of the wrenches)
- 3. Determine the minum distance from the origin to the edge of the Grasp Wrench Space

Exercise 3.3: *ɛ*-Metric, Bonus

Karlsruher Institut für Technologie

What is the value range of the ${m arepsilon}$ -metric?

- a) $\epsilon \in (-\infty,\infty)$
- b) $|\epsilon| \ll 1$
- c) $\epsilon \in (0,\infty)$
- d) $\epsilon \in [0,\infty)$
- e) $\epsilon \in [0,1]$

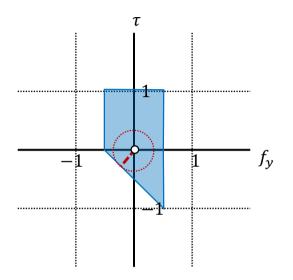


Exercise 3.3: *ɛ*-Metric, Bonus

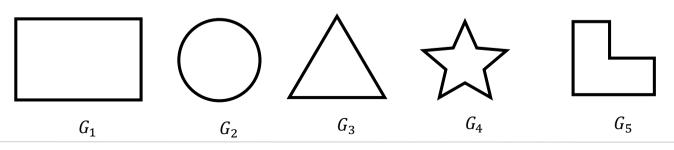
Karlsruher Institut für Technologie

What is the value range of the ${m arepsilon}$ -metric?

- a) $\epsilon \in (-\infty,\infty)$
- b) $|\epsilon| \ll 1$
- c) $\epsilon \in (0,\infty)$
- d) $\epsilon \in [0, \infty)$
- e) $\epsilon \in [0,1]$



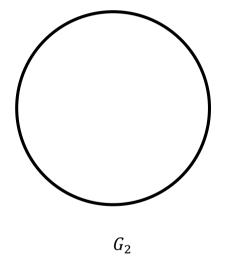
- The medial axis of a two-dimensional region $G \subset \mathbb{R}^2$ is the set of centers of the maximum circles in G.
- A circle K is a maximum circle in G if there is no circle K' for which $K \subset K' \subseteq G$ is true:
 - $K \subseteq G$ and
 - $\blacksquare \neg \exists K': K \subset K' \subseteq G$
- **Draw the medial axes of the regions** G_1, \ldots, G_5 .

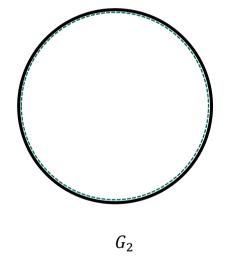


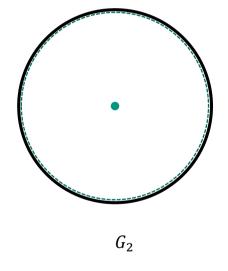
Grasp Planning with Medial Axes

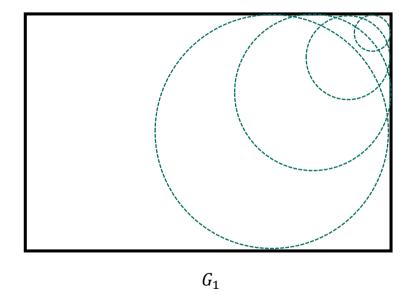
- The medial axis (Blum 1967) describes the topological skeleton of the object
- In 3D: Consider center of spheres instead of center of circles
- Grasp candidates can be generated using heuristics
 - High percentage of stable and "natural" grasps
- Advantages:
 - Good approximation of the object geometry
 - Details are retained
 - Good description of symmetries

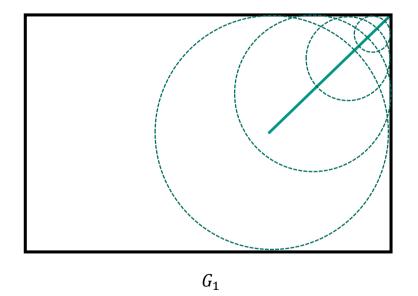
H. Blum, Models for the Perception of Speech and Visual Form. A transformation for extracting new descriptors of shape, Cambridge, Massachusetts: MIT Press, 1967, pp. 362–380.

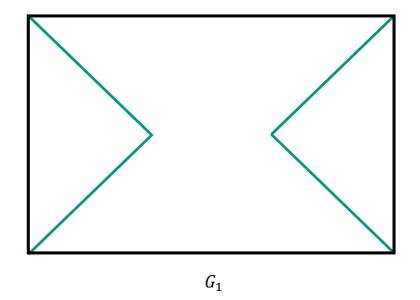


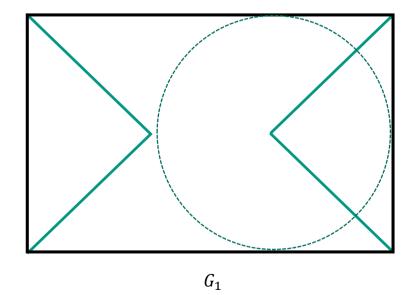


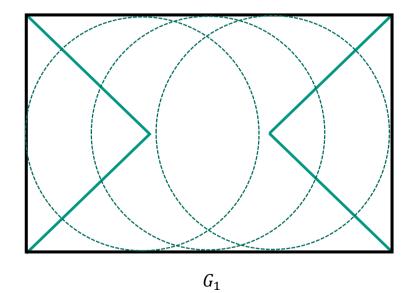


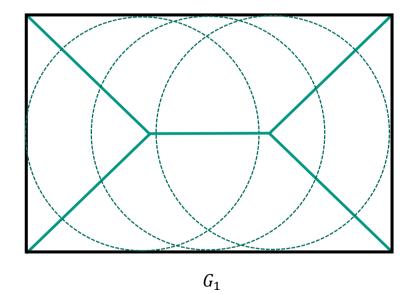


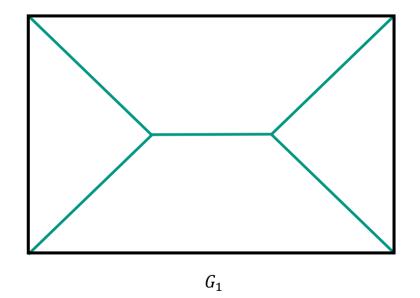


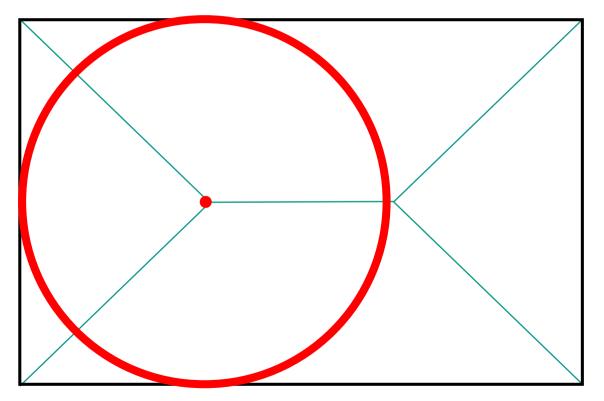


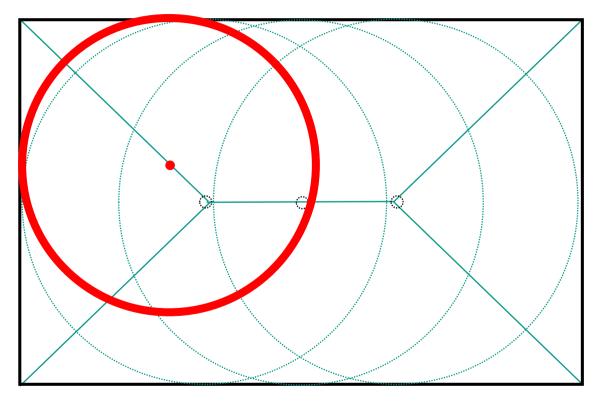


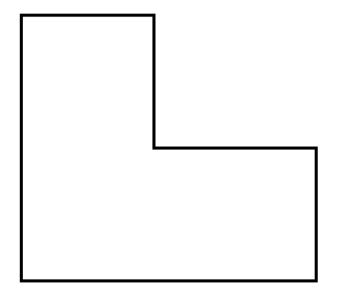


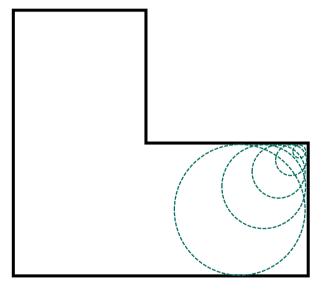


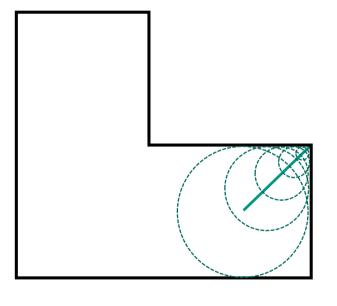


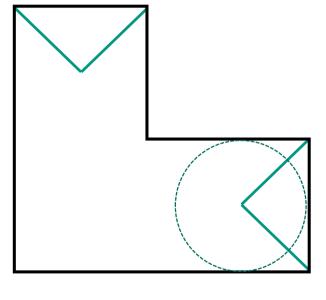




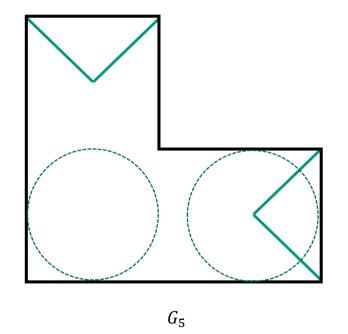


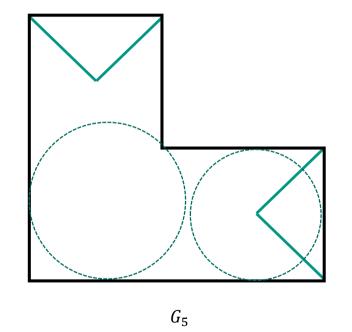


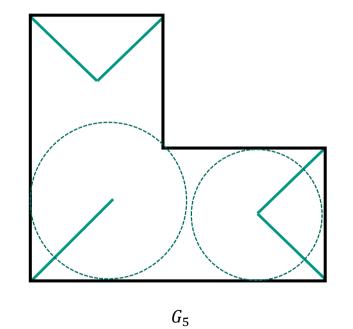


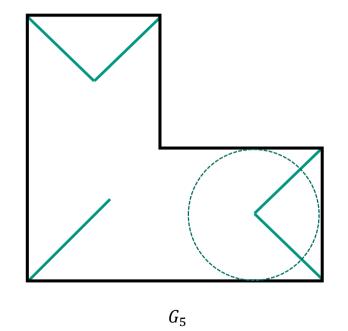


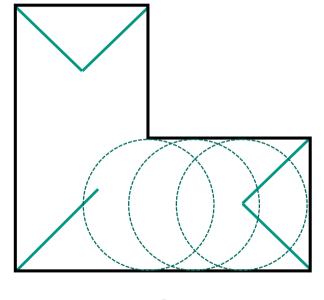
 G_5

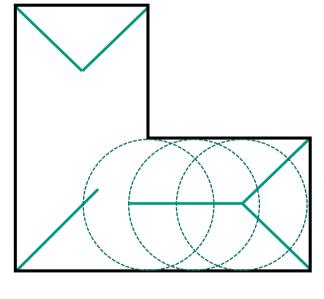


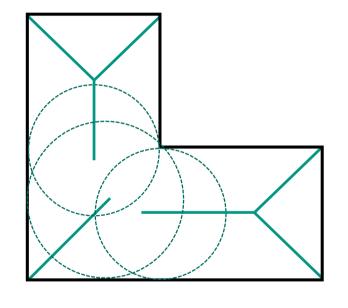


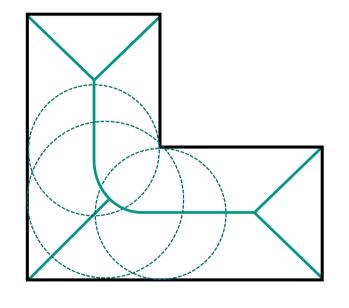


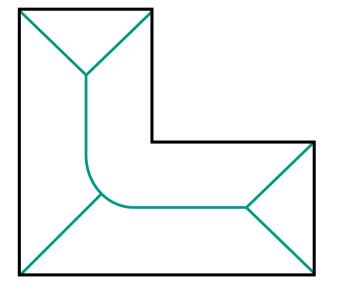












 G_5

